Split Common Coincidence Point Problem: A Formulation Applicable to (Bio)Physically-Based Inverse Planning Optimization
نویسندگان
چکیده
منابع مشابه
Multidirectional hybrid algorithm for the split common fixed point problem and application to the split common null point problem
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. ...
متن کاملCoincidence point and common fixed point results via scalarization function
The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for three self mappings in $b$-metric spaces. Next, we obtain cone $b$-metric version of these results by using a scalarization function. Our results extend and generalize several well known comparable results in the existing literature.
متن کاملMathematical Formulation of DMH-Based Inverse Optimization
PURPOSE To introduce the concept of dose-mass-based inverse optimization for radiotherapy applications. MATERIALS AND METHODS Mathematical derivation of the dose-mass-based formalism is presented. This mathematical representation is compared to the most commonly used dose-volume-based formulation used in inverse optimization. A simple example on digitally created phantom is presented. The pha...
متن کاملA KIND OF F-INVERSE SPLIT MODULES
Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct...
متن کاملA Sensitivity Matrix Based Methodology for Inverse Problem Formulation
We propose an algorithm to select parameter subset combinations that can be estimated using an ordinary least-squares (OLS) inverse problem formulation with a given data set. First, the algorithm selects the parameter combinations that correspond to sensitivity matrices with full rank. Second, the algorithm involves uncertainty quantification by using the inverse of the Fisher Information Matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12122086